Low Scale Flavor Gauge Symmetries

Michele Redi
CERN

in collaboration with
Benjamin Grinstein and Giovanni Villadoro
arxiv:1009.2049[hep-ph]

Padova,
20 October
Outline

• Flavor Problem
• Gauging the Flavor Group
• The Model
• Experimental Bounds
• Two Examples
One of the most obscure aspects of the SM is the Yukawa sector

\[
\frac{m_u}{m_t} = 10^{-5}
\]
One of the most obscure aspects of the SM is the Yukawa sector

\[
\frac{m_u}{m_t} = 10^{-5}
\]

Very strong bounds from flavor physics. 4-fermion operators must be suppressed by high scale

\[
\frac{1}{\Lambda^2} (\bar{d}_L \gamma^\mu d_L)^2
\]

\[
\frac{1}{\Lambda^2} (\bar{d}_R s_L \bar{d}_L s_R)
\]

\[
\Lambda_{LL} > 10^3 - 10^4 \text{ TeV}
\]

\[
\Lambda_{LR} > 10^4 - 10^5 \text{ TeV}
\]
One of the most obscure aspects of the SM is the Yukawa sector

\[\frac{m_u}{m_t} = 10^{-5} \]

Very strong bounds from flavor physics. 4-fermion operators must be suppressed by high scale

\[\frac{1}{\Lambda^2} \left(\bar{d}_L \gamma^\mu d_L \right)^2 \]

\[\frac{1}{\Lambda^2} \left(\bar{d}_R s_L \bar{d}_L s_R \right) \]

\[\Lambda_{LL} > 10^3 - 10^4 \text{ TeV} \]

\[\Lambda_{LR} > 10^4 - 10^5 \text{ TeV} \]

Flavor physics seems very far. Major embarrassment for most BSM scenarios!
Without Yukawas SM (quark sector) has a flavor symmetry

\[SU(3)_{Q_L} \otimes U(3)_{U_R} \otimes U(3)_{D_R} \]

\[Q_L = (3, 1, 1) \]
\[U_R = (1, 3, 1) \]
\[D_R = (1, 1, 3) \]
Without Yukawas SM (quark sector) has a flavor symmetry

\[SU(3)_{Q_L} \otimes U(3)_{U_R} \otimes U(3)_{D_R} \]

\[Q_L = (3, 1, 1) \]
\[U_R = (1, 3, 1) \]
\[D_R = (1, 1, 3) \]

Minimal Flavor Violation: Yukawas are the only sources of flavor violation. Higher dimensional operators must be built with positive powers of Yukawas

\[\bar{q}_L y_u y_u^\dagger \gamma^\mu \bar{q}_L \]
\[\bar{d}_R y_d y_d^\dagger y_u^\dagger \bar{d}_L \]
\[\bar{d}_R y_d y_u y_u^\dagger y_d \gamma^\mu \bar{d}_R \]

With MFV new physics can lie around the TeV scale.

But where is MFV coming from?
Can flavor be an exact symmetry of Nature?
Can flavor be an exact symmetry of Nature?

Symmetry must be spontaneously broken.

Most simply flavons with Yukawas quantum numbers:

\[Y_u = (3, \bar{3}, 1) \]
\[Y_d = (3, 1, \bar{3}) \]

\[y_{u,d} = \frac{<Y_{u,d}>}{M_{u,d}} \]
Can flavor be an exact symmetry of Nature?

Symmetry must be spontaneously broken.

Most simply flavons with Yukawas quantum numbers:

\[Y_u = (3, \bar{3}, 1) \]
\[Y_d = (3, 1, \bar{3}) \]

- Global

Massless Goldstone Bosons. Strong bounds from rare decays and astrophysics.

\[f > 10^{12} \text{ GeV} \]
Can flavor be an exact symmetry of Nature?

Symmetry must be spontaneously broken.

Most simply flavons with Yukawas quantum numbers:

\[
Y_u = (3, \bar{3}, 1) \quad \text{and} \quad Y_d = (3, 1, \bar{3})
\]

- **Global**

 Massless Goldstone Bosons. Strong bounds from rare decays and astrophysics.

 \[y_{u,d} = \frac{\langle Y_{u,d} \rangle}{M_{u,d}} \]

 \[f > 10^{12} \text{ GeV} \]

- **Local**

 GBs are eaten and become longitudinal components of flavor gauge bosons.
\[\mathcal{L}_{mass} = \text{Tr}|g_U A_U Y_u - g_Q Y_u A_Q|^2 + \text{Tr}|g_D A_D Y_d - g_Q Y_d A_Q|^2 \]
\[= \frac{1}{2} V_{Aa} (M_V^2)^{Aa,Bb} V_{Bb}, \]

\[M^2 \sim g^2 < Y^2 > \]

Flavor gauge bosons mediate FCNC

\[\frac{-1}{8} (M_V^2)^{-1}_{Aa,Bb} \chi^a_{ij} \chi^b_{hk} J_{\mu}^{ij,A} J_{\mu}^{hk,B} \]

\[J_{\mu}^{ij,A} = (g_Q \bar{Q}_L^i \gamma^\mu Q_L^j, g_U \bar{U}_R^i \gamma^\mu U_R^j, g_D \bar{D}_R^i \gamma^\mu D_R^j) \]

\[\sim \frac{1}{M^2} (\bar{q} \gamma^\mu q)^2 \sim \frac{1}{< Y_{u,d}^2 >} (\bar{q} q)^2 \sim \frac{1}{M^2_{u,d} y_{u,d}^2} (\bar{q} q)^2 \]
\[
\mathcal{L}_{mass} = \text{Tr}|g_U A_U Y_u - g_Q Y_u A_Q|^2 + \text{Tr}|g_D A_D Y_d - g_Q Y_d A_Q|^2 \\
= \frac{1}{2} V_{Aa}(M_V^2)^{Aa,Bb} V_{Bb},
\]

\[
M^2 \sim g^2 \langle Y^2 \rangle
\]

Flavor gauge bosons mediate FCNC

\[
-\frac{1}{8}(M_V^2)^{-1}_{Aa,Bb} \lambda^a_{ij} \lambda^b_{hk} J^{ij,A}_{\mu} J^{\mu hk,B}
\]

\[
J^{\mu ij,A} = (g_Q \bar{Q}_L^i \gamma^\mu Q^j_L, g_U \bar{U}_R^i \gamma^\mu U^j_R, g_D \bar{D}_R^i \gamma^\mu D^j_R)
\]

\[
\sim \frac{1}{M^2} (\bar{q} \gamma^\mu q)^2 \sim \frac{1}{\langle Y^2_{u,d} \rangle} (\bar{q}q)^2 \sim \frac{1}{(M_{u,d} y^2_{u,d})^2}(\bar{q}q)^2
\]

Maximal Flavor Violation!

Flavor must be broken at very high scale,

\[
\langle Y \rangle \gtrsim 10^5 \text{ TeV} \quad \langle M \rangle \gg 10^5 \text{ TeV}
\]

Wednesday, October 20, 2010
But is $y = \langle Y \rangle / M$ really? In a renormalizable theory this could originate from,

$$L_{yuk} = \bar{Q} \tilde{H} \Psi_R + \bar{\Psi}_L M_u \Psi_R + \bar{\Psi}_L Y_u U_R$$
But is \(y = \langle Y \rangle / M \) really? In a renormalizable theory this could originate from,

\[
\mathcal{L}_{yuk} = \bar{Q} \tilde{H} \psi_R + \bar{\psi}_L M_u \psi_R + \bar{\psi}_L Y_u U_R
\]

However functions of \(Y \) can transform as \(Y \).

We could imagine an inverted hierarchy,

\[y \sim \frac{M}{Y^*} \]

FCNC:

\[
\sim \frac{1}{\langle Y_{u,d}^2 \rangle} (\bar{q}q)^2 \sim \frac{y_{u,d}^2}{M_{u,d}^2} (\bar{q}q)^2
\]
Anomalies

Flavor gauge symmetries are anomalous:

\[SU(3)^3_{Q_L} \quad SU(3)^3_{U_R} \quad SU(3)^3_{D_R} \]

\[U(1)_Y \times SU(3)^2_{Q_L} \quad U(1)_Y \times SU(3)^2_{U_R} \quad U(1)_Y \times SU(3)^2_{D_R} \]
Anomalies

Flavor gauge symmetries are anomalous:

\[SU(3)_Q^3 \quad SU(3)_U^3 \quad SU(3)_D^3 \]

\[U(1)_Y \times SU(3)_Q^2 \quad U(1)_Y \times SU(3)_U^2 \quad U(1)_Y \times SU(3)_D^2 \]

New fermions need to be added,

\[\Psi_{uR} = (3, 1, 1) \]
\[\Psi_{dR} = (3, 1, 1) \]
\[\Psi_u = (1, 3, 1) \]
\[\Psi_d = (1, 1, 3) \]
Anomalies

Flavor gauge symmetries are anomalous:

\[SU(3)^3_{Q_L} \quad SU(3)^3_{U_R} \quad SU(3)^3_{D_R} \]
\[U(1)_Y \times SU(3)^2_{Q_L} \quad U(1)_Y \times SU(3)^2_{U_R} \quad U(1)_Y \times SU(3)^2_{D_R} \]

New fermions need to be added,

\[\Psi_{u_R} = (3, 1, 1)^{\frac{2}{3}} \]
\[\Psi_{d_R} = (3, 1, 1)^{-\frac{1}{3}} \]
\[\Psi_u = (1, 3, 1)^{\frac{2}{3}} \]
\[\Psi_d = (1, 1, 3)^{-\frac{1}{3}} \]

Flavor \(U(1) \) anomalies also cancel.
Model

<table>
<thead>
<tr>
<th></th>
<th>SU(3)$_{Q_L}$</th>
<th>SU(3)$_{U_R}$</th>
<th>SU(3)$_{D_R}$</th>
<th>SU(3)$_{c}$</th>
<th>SU(2)$_{L}$</th>
<th>U(1)$_{Y}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_L</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1/6</td>
</tr>
<tr>
<td>U_R</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>D_R</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-1/3</td>
</tr>
<tr>
<td>Ψ_{uR}</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>Ψ_{dR}</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>-1/3</td>
</tr>
<tr>
<td>Ψ_u</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2/3</td>
</tr>
<tr>
<td>Ψ_d</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>-1/3</td>
</tr>
<tr>
<td>Y_u</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Y_d</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1/2</td>
</tr>
</tbody>
</table>

$$
\mathcal{L} = \mathcal{L}_{kin} - V(Y_u, Y_d, H) + \\
(\lambda_u \bar{Q}_L H \Psi_{uR} + \lambda_u' \bar{\Psi}_u Y_u \Psi_{uR} + M_u \bar{\Psi}_u U_R + \\
\lambda_d \bar{Q}_L H \Psi_{dR} + \lambda_d' \bar{\Psi}_d Y_d \Psi_{dR} + M_d \bar{\Psi}_d D_R + h.c.) ,
$$
Yukawas:

\[y_u = \frac{\lambda_u M_u}{\chi_u Y_u^\dagger} \] \(\langle Y \rangle \gg M \)

\[y_d = \frac{\lambda_d M_d}{\chi_d Y_d^\dagger} \] \(\langle Y^\dagger \rangle \ll M \)

\[y_t \sim \lambda_u \]

\[\langle Y^\dagger \rangle \ll M \]
Yukawas:

\[
y_u = \frac{\lambda_u M_u}{\lambda_u Y_u^\dagger}
\]

\[
y_d = \frac{\lambda_d M_d}{\lambda_d Y_d^\dagger}
\]

\[
\langle Y \rangle \gg M
\]

\[
y_t \sim \lambda_u
\]

\[
\langle Y^\dagger \rangle \ll M
\]

Inverted hierarchy!

Flavor physics can appear at the TeV scale.
Yukawas:

\[y_u = \frac{\lambda_u M_u}{\lambda_u Y_u} \]
\[y_d = \frac{\lambda_d M_d}{\lambda_d Y_d} \]

\[\langle Y \rangle \gg M \]
\[y_t \sim \lambda_u \]
\[\langle Y^\dagger \rangle \ll M \]

Inverted hierarchy!
Flavor physics can appear at the TeV scale.

Exotic fermions:

\[m'_{u,d} \sim \lambda'_{u,d} \langle Y_{u,d} \rangle \]

Flavon couplings highly suppressed

\[\sim \frac{M}{Y^i + \delta Y^i} v \bar{q}_i q_i \approx \left(1 - y^i \frac{\delta Y^i}{M}\right) m_q \bar{q}_i q_i \]
Remarks:

- Only two flavor violating structures as SM,

\[Y_d = \hat{Y}_d \quad \quad Y_u = \hat{Y}_d V \]

However NOT MFV.
Remarks:

- Only two flavor violating structures as SM,

\[Y_d = \hat{Y}_d \quad Y_u = \hat{Y}_d V \]

However NOT MFV.

- Potential:

 With two flavon fields no renormalizable potential.

 Possible to construct potential with high cut-off.

 Adding several flavons: More flavor violating structures but still enough flavor suppression.

- Trivial extension to lepton. Different gaugings.
Phenomenology
Modified SM Couplings

\[\mathcal{L}_{yuk} = \lambda_u \overline{Q}_L \hat{H} \Psi_{uR} + \lambda'_u \overline{\Psi}_u Y_u \Psi_{uR} + M_u \overline{\Psi}_u U_R + \ldots \]

After EWSB the mass eigenstates are

\[
\begin{pmatrix}
 u_R^i \\
 u_L^i
\end{pmatrix} =
\begin{pmatrix}
 c_{uR_i} & -s_{uR_i} \\
 s_{uR_i} & c_{uR_i}
\end{pmatrix}
\begin{pmatrix}
 U_R^i \\
 \Psi_{uR}^i
\end{pmatrix},
\]

\[
\begin{pmatrix}
 u_L^i \\
 u_R^i
\end{pmatrix} =
\begin{pmatrix}
 c_{uL_i} & -s_{uL_i} \\
 s_{uL_i} & c_{uL_i}
\end{pmatrix}
\begin{pmatrix}
 U_L^i \\
 \Psi_u^i
\end{pmatrix},
\]

Natural parametrization

\[
x_i \equiv \frac{M_u}{m_{u_i}},
\]

\[
y_i \equiv \frac{\lambda_u v}{\sqrt{2} m_{u_i}},
\]

\[
s_{u_{Li}} = \sqrt{\frac{y_i^2 - 1}{x_i^2 y_i^2 - 1}}
\]

\[
s_{u_{Ri}} = \sqrt{\frac{x_i^2 - 1}{x_i^2 y_i^2 - 1}}
\]
Modified SM Couplings

\[\mathcal{L}_{yuk} = \lambda_u \overline{Q}_L \hat{H} \Psi_{uR} + \lambda_u' \overline{\Psi}_u Y_u \Psi_{uR} + M_u \overline{\Psi}_u U_R + \ldots \]

After EWSB the mass eigenstates are

\[
\begin{pmatrix}
 u_R^i \\
 u_R^i
\end{pmatrix} = \begin{pmatrix} c_{u_{R_i}} & -s_{u_{R_i}} \\
 s_{u_{R_i}} & c_{u_{R_i}} \end{pmatrix} \begin{pmatrix} U_R^i \\
 \Psi_{uR} \end{pmatrix},
\]

\[
\begin{pmatrix}
 u_L^i \\
 u_L^i
\end{pmatrix} = \begin{pmatrix} c_{u_{L_i}} & -s_{u_{L_i}} \\
 s_{u_{L_i}} & c_{u_{L_i}} \end{pmatrix} \begin{pmatrix} U_L^i \\
 \Psi_{u} \end{pmatrix},
\]

Natural parametrization

\[
x_i \equiv \frac{M_u}{m_{u_i}}, \quad y_i \equiv \frac{\lambda_u v}{\sqrt{2} m_{u_i}},
\]

\[
s_{u_{Li}} = \sqrt{\frac{y_i^2 - 1}{x_i^2 y_i^2 - 1}} \quad s_{u_{Ri}} = \sqrt{\frac{x_i^2 - 1}{x_i^2 y_i^2 - 1}}
\]

Decoupling:

\[x_i \rightarrow \infty \quad \text{or} \quad y_i \rightarrow 1 \]
Right handed fermions mix with exotic with equal charges so their couplings are the same as in the SM.
Right handed fermions mix with exotic with equal charges so their couplings are the same as in the SM.

SM left-handed doublets mix with singlets. The couplings are modified.

Charged currents:

\[
\bar{u}_L (c_{uL} V c_{dL}) \gamma^\mu d_L + \bar{u}_L (c_{uL} V s_{dL}) \gamma^\mu d'_L \\
+ \bar{u}'_L (s_{uL} V c_{dL}) \gamma^\mu d_L + \bar{u}'_L (s_{uL} V s_{dL}) \gamma^\mu d'_L
\]
Right handed fermions mix with exotic with equal charges so their couplings are the same as in the SM.

SM left-handed doublets mix with singlets. The couplings are modified.

Charged currents:

\[
\bar{u}_L (c_{u_L} V c_{d_L}) \gamma^\mu d_L + \bar{u}_L (c_{u_L} V s_{d_L}) \gamma^\mu d'_L \\
+ \bar{u}'_L (s_{u_L} V c_{d_L}) \gamma^\mu d_L + \bar{u}'_L (s_{u_L} V s_{d_L}) \gamma^\mu d'_L
\]

Neutral currents:

\[
\bar{u}_L (T^u_3 c_{u_L}^2 - s_w^2 Q_u) \gamma^\mu u_L + \bar{u}_L (T^u_3 c_{u_L} s_{u_L}) \gamma^\mu u'_L \\
+ \bar{u}'_L (T^u_3 s_{u_L} c_{u_L}) \gamma^\mu u_L + \bar{u}'_L (T^u_3 s_{u_L}^2 - s_w^2 Q_u) \gamma^\mu u'_L + (u \rightarrow d),
\]

Higgs Couplings:

\[
\frac{1}{\sqrt{2}} \lambda_u h \left[-\bar{t}_L c_{u_L} s_{u_R} t_R + \bar{t}_L c_{u_L} c_{u_R} t'_R - \bar{t'}_L s_{u_L} s_{u_R} t_R + \bar{t'}_L s_{u_L} c_{u_R} t'_R \right] + (u \rightarrow d) + \text{h.c.}
\]
Δ\text{Down Sector}

- $Z\rightarrow bb$

\[
\frac{\delta g_{Z\rightarrow b\bar{b}}}{g_{Z\rightarrow b\bar{b}}} = s_{dL3}^2
\]

\[
\frac{\delta \Gamma_{Zb\bar{b}}}{\Gamma_{Zb\bar{b}}} = -s_{dL3}^2 \frac{2 + 4s_w^2 Q_d}{1 + 4s_w^2 Q_d + 8s_w^4 Q_d^2} \approx -2.3 s_{dL3}^2
\]

\[
s_{dL3} \sim \frac{m_b}{M_d}
\]

$s_{dL3} < .04$
Down Sector

• $Z \rightarrow b \bar{b}$

\[
\frac{\delta g_{Z \rightarrow b \bar{b}}}{g_{Z \rightarrow b \bar{b}}} = s_{dL3}^2
\]

\[
\frac{\delta \Gamma_{Z b \bar{b}}}{\Gamma_{Z b \bar{b}}} = -s_{dL3}^2 \frac{2 + 4s_w^2 Q_d}{1 + 4s_w^2 Q_d + 8s_w^4 Q_d^2} \approx -2.3 s_{dL3}^2,
\]

\[
s_{dL3} \sim \frac{m_b}{M_d}
\]

$s_{dL3} < .04$

• Direct bounds

$m_{b'} > 268 \text{GeV}$ or $< 100 \text{GeV}$ [$b' \rightarrow Zb$, BR = 1]

$m_{b'} > 385 \text{GeV}$ [$b' \rightarrow Wt$, BR = 1]

Our Model

$m_{b'} > 385 \text{GeV}$ allowed

$45 \text{GeV} < m_{b'} < 385 \text{GeV}$ model dependent
Up Sector

- Oblique corrections

\[
S = -16\pi \Pi'_{3Y}(0), \\
T = \frac{4\pi}{s_w^2 c_w^2 M_Z^2} [\Pi_{11}(0) - \Pi_{33}(0)], \\
U = 16\pi [\Pi'_{11}(0) - \Pi'_{33}(0)]
\]

\[
T = \frac{48\pi}{s_w^2 c_w^2 M_Z^2} [2s_{uL3}^2 \Pi_{LL}(m_t, m_b, 0) + 2s_{uL3}^2 \Pi_{LL}(m_{t'}, m_b, 0) + (1 - c_{uL3}^4) \Pi_{LL}(m_t, m_t, 0) - s_{uL3}^4 \Pi_{LL}(m_{t'}, m_{t'}, 0) - 2s_{uL3}^2 c_{uL3}^2 \Pi_{LL}(m_t, m_{t'}, 0)]
\]

\[
T = \frac{3 s_{uL3}^2 m_t^2}{8\pi s_w^2 c_w^2 M_Z^2} \left[c_{uL3}^2 \left(\frac{m_{t'}^2}{m_t^2} \log \left(\frac{m_{t'}^2}{m_t^2} \right) - 1 \right) + \frac{s_{uL3}^2}{2} \left(\frac{m_{t'}^2}{m_t^2} - 1 \right) \right].
\]

\[
S \approx 0 \quad U \approx 0
\]
Heavy Higgs

A heavy Higgs can be naturally accommodated

Correction to T is always positive while contribution to S is always negligible.
• V_{tb}

$$V_{CKM} = c_{u_L} \cdot V \cdot c_{d_L}$$

Tevatron

$$V_{tb} \approx c_{u_{L3}} > 0.77$$

(single top production)

• $b \rightarrow s\gamma$

$$A_{b \rightarrow s\gamma} = f(m_t) + s_{u_{L3}}^2 (f(m_{t'}) - f(m_t))$$

(always bigger than SM)

• Direct bounds

$$m_{t'} > 335 \text{ GeV}$$

allowed

$$45 \text{ GeV} < m_{t'} < 335 \text{ GeV}$$

model dependent
Examples

We choose models with order 1 couplings. Always consistent with flavor bounds. Details of the spectrum model dependent but structure robust.
Examples

We choose models with order 1 couplings. Always consistent with flavor bounds. Details of the spectrum model dependent but structure robust.

- $\text{SU}(3)_{QL} \otimes \text{U}(3)_{UR} \otimes \text{U}(3)_{DR}$

<table>
<thead>
<tr>
<th>M_u (GeV)</th>
<th>M_d (GeV)</th>
<th>λ_u</th>
<th>λ'_u</th>
<th>λ_d</th>
<th>λ'_d</th>
<th>g_Q</th>
<th>g_U</th>
<th>g_D</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>100</td>
<td>1.1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.25</td>
<td>0.3</td>
<td>1</td>
<td>0.3</td>
</tr>
</tbody>
</table>

$Y_u \approx \text{Diag} \left(1 \cdot 10^5, \ 2 \cdot 10^2, \ 3 \cdot 10^{-1} \right) \cdot V \ \text{TeV}$,

$Y_d \approx \text{Diag} \left(6 \cdot 10^3, \ 4 \cdot 10^2, \ 7 \right) \ \text{TeV}$.
\[
\frac{\delta R_b}{R_b} = -1.0 \cdot 10^{-3},
\]
\[
S = 0.00, \ T = 0.15, \ U = 0.01,
\]
\[
V_{tb} = 0.97.
\]

\text{spin}_{1/2} : .4, 1.8, 90 \ TeV

\text{spin}_{1} : .29, 1.9, 3.9, 80 \ TeV
Effective 4-Fermi operators from flavor gauge boson,

\[
Q_{1}^{q_{i}q_{j}} = \bar{q}_{jL}^{\alpha}\gamma_{\mu}q_{iL}^{\alpha}\bar{q}_{jL}^{\beta}\gamma_{\mu}q_{iL}^{\beta},
\]

\[
\tilde{Q}_{1}^{q_{i}q_{j}} = \bar{q}_{jR}^{\alpha}\gamma_{\mu}q_{iR}^{\alpha}\bar{q}_{jR}^{\beta}\gamma_{\mu}q_{iR}^{\beta},
\]

\[
Q_{5}^{q_{i}q_{j}} = \bar{q}_{jR}^{\alpha}q_{iL}^{\beta}\bar{q}_{jL}^{\beta}q_{iR}^{\alpha}.
\]

<table>
<thead>
<tr>
<th>Model</th>
<th>(C_{K}^{1})</th>
<th>Re (in GeV(^{-2}))</th>
<th>Im (in GeV(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\tilde{C}_{K}^{1})</td>
<td>(-7 \cdot 10^{-15})</td>
<td>(-8 \cdot 10^{-20})</td>
</tr>
<tr>
<td></td>
<td>(C_{K}^{5})</td>
<td>(-1 \cdot 10^{-16})</td>
<td>(-1 \cdot 10^{-21})</td>
</tr>
<tr>
<td></td>
<td>(\tilde{C}_{K}^{5})</td>
<td>(-4 \cdot 10^{-15})</td>
<td>(-4 \cdot 10^{-20})</td>
</tr>
<tr>
<td></td>
<td>(C_{D}^{1})</td>
<td>(-3 \cdot 10^{-20})</td>
<td>(-3 \cdot 10^{-23})</td>
</tr>
<tr>
<td></td>
<td>(\tilde{C}_{D}^{1})</td>
<td>(-3 \cdot 10^{-25})</td>
<td>(-4 \cdot 10^{-28})</td>
</tr>
<tr>
<td></td>
<td>(C_{D}^{5})</td>
<td>(-4 \cdot 10^{-22})</td>
<td>(-4 \cdot 10^{-25})</td>
</tr>
<tr>
<td></td>
<td>(C_{B_{d}}^{1})</td>
<td>(2 \cdot 10^{-16})</td>
<td>(2 \cdot 10^{-16})</td>
</tr>
<tr>
<td></td>
<td>(\tilde{C}{B{d}}^{1})</td>
<td>(1 \cdot 10^{-21})</td>
<td>(1 \cdot 10^{-21})</td>
</tr>
<tr>
<td></td>
<td>(C_{B_{d}}^{5})</td>
<td>(2 \cdot 10^{-18})</td>
<td>(2 \cdot 10^{-18})</td>
</tr>
<tr>
<td></td>
<td>(C_{B_{s}}^{1})</td>
<td>(3 \cdot 10^{-13})</td>
<td>(-4 \cdot 10^{-13})</td>
</tr>
<tr>
<td></td>
<td>(\tilde{C}{B{s}}^{1})</td>
<td>(5 \cdot 10^{-16})</td>
<td>(-6 \cdot 10^{-16})</td>
</tr>
<tr>
<td></td>
<td>(C_{B_{s}}^{5})</td>
<td>(5 \cdot 10^{-14})</td>
<td>(-6 \cdot 10^{-14})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bounds</th>
<th>(C_{K}^{1})</th>
<th>Re (in GeV(^{-2}))</th>
<th>Im (in GeV(^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\tilde{C}_{K}^{1})</td>
<td>([-9.6, 9.6] \cdot 10^{-13})</td>
<td>([-4.4, 2.8] \cdot 10^{-15})</td>
</tr>
<tr>
<td></td>
<td>(C_{K}^{5})</td>
<td>([-9.6, 9.6] \cdot 10^{-13})</td>
<td>([-4.4, 2.8] \cdot 10^{-15})</td>
</tr>
<tr>
<td></td>
<td>(\tilde{C}_{K}^{5})</td>
<td>([-1.0, 1.0] \cdot 10^{-14})</td>
<td>([-5.2, 2.9] \cdot 10^{-17})</td>
</tr>
</tbody>
</table>

\[
| C_{D}^{1} | < 7.2 \cdot 10^{-14}
\]
\[
| \tilde{C}_{D}^{1} | < 7.2 \cdot 10^{-14}
\]
\[
| C_{D}^{5} | < 4.8 \cdot 10^{-13}
\]
\[
| C_{B_{d}}^{1} | < 2.3 \cdot 10^{-11}
\]
\[
| \tilde{C}_{B_{d}}^{1} | < 2.3 \cdot 10^{-11}
\]
\[
| C_{B_{d}}^{5} | < 6.0 \cdot 10^{-13}
\]
\[
| C_{B_{s}}^{1} | < 1.1 \cdot 10^{-9}
\]
\[
| \tilde{C}_{B_{s}}^{1} | < 1.1 \cdot 10^{-9}
\]
\[
| C_{B_{s}}^{5} | < 4.5 \cdot 10^{-11}
\]

Safer than MFV!
• \(\text{SU}(3)_{QL} \otimes \text{SU}(3)_{UR} \otimes \text{SU}(3)_{DR} \)

<table>
<thead>
<tr>
<th>(M_u) (GeV)</th>
<th>(M_d) (GeV)</th>
<th>(\lambda_u)</th>
<th>(\lambda'_u)</th>
<th>(\lambda_d)</th>
<th>(\lambda'_d)</th>
<th>(g_Q)</th>
<th>(g_U)</th>
<th>(g_D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>100</td>
<td>1</td>
<td>0.5</td>
<td>0.25</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.5</td>
</tr>
</tbody>
</table>

\(Y_u \approx \text{Diag}(1 \cdot 10^5, 2 \cdot 10^2, 8 \cdot 10^{-2}) \cdot V \text{ TeV} \),

\(Y_d \approx \text{Diag}(5 \cdot 10^3, 3 \cdot 10^2, 6) \text{ TeV} \),

<table>
<thead>
<tr>
<th>(C^1_K)</th>
<th>(C^1_K)</th>
<th>(C^5_K)</th>
<th>(C^1_D)</th>
<th>(C^1_D)</th>
<th>(C^5_D)</th>
<th>(C^1_{B_d})</th>
<th>(C^1_{B_d})</th>
<th>(C^5_{B_d})</th>
<th>(C^1_{B_s})</th>
<th>(C^1_{B_s})</th>
<th>(C^5_{B_s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Re (in GeV}^{-2})</td>
<td>(\text{Im (in GeV}^{-2})</td>
</tr>
<tr>
<td>(-1 \cdot 10^{-14})</td>
<td>(-1 \cdot 10^{-19})</td>
<td>(-2 \cdot 10^{-16})</td>
<td>(-2 \cdot 10^{-21})</td>
<td>(-5 \cdot 10^{-15})</td>
<td>(-6 \cdot 10^{-20})</td>
<td>(-2 \cdot 10^{-20})</td>
<td>(-2 \cdot 10^{-23})</td>
<td>(-2 \cdot 10^{-25})</td>
<td>(1 \cdot 10^{-16})</td>
<td>(5 \cdot 10^{-16})</td>
<td>(9 \cdot 10^{-22})</td>
</tr>
</tbody>
</table>
\[\frac{\delta R_b}{R_b} = -1.0 \cdot 10^{-3}, \]
\[S = 0.00, \quad T = 0.01, \quad U = 0.00, \]
\[V_{tb} = 1.00. \]

\[\text{spin}_{\frac{1}{2}} : 0.4, 1.8, 90 \text{ TeV} \]
\[\text{spin}_{1} : 2.8, 53, 53, 66 \text{ TeV} \]
Signals

b' and t' could be produced at LHC if allowed kinematically
Signals

b’ and t’ could be produced at LHC if allowed kinematically

- b’ : Decay in Wt, Zb highly suppressed by small mixing, branching into Hb O(1)

\[pp \rightarrow \bar{b}' b' + X \rightarrow 2h + 2b + X \rightarrow 6b + X \]
Signals

b’ and t’ could be produced at LHC if allowed kinematically

• b’ : Decay in Wt, Zb highly suppressed by small mixing, branching into Hb O(1)

\[pp \rightarrow \bar{b}'b' + X \rightarrow 2h + 2b + X \rightarrow 6b + X \]

• t’ : Possible larger mixing. Higgs coupling zero if \(\langle Y_t \rangle = 0 \). SM decays forbidden up to mixing effects,

\[t' \rightarrow t\bar{t} \]
Signals

b' and t' could be produced at LHC if allowed kinematically

- **b'**: Decay in Wt, Zb highly suppressed by small mixing, branching into Hb O(1)

 \[pp \rightarrow b'b' + X \rightarrow 2h + 2b + X \rightarrow 6b + X \]

- **t'**: Possible larger mixing. Higgs coupling zero if \(<Y_t> = 0 \). SM decays forbidden up to mixing effects,

 \[t' \rightarrow t\bar{t} \]

- **Flavor gauge boson**: Non-universal lepto-phobic \(Z' \)
 Mostly coupled to third generation.
 Drell-Yan production or gluon fusion.

Wednesday, October 20, 2010
Conclusions
Conclusions

- Flavor physics might not be as far in energy as previously expected.
Conclusions

• Flavor physics might not be as far in energy as previously expected.

• Simplest construction of flavor gauge symmetries in the SM realizes the inverted hierarchical structure. This allows flavor physics to be around the electro-weak scale.
Conclusions

• Flavor physics might not be as far in energy as previously expected.

• Simplest construction of flavor gauge symmetries in the SM realizes the inverted hierarchical structure. This allows flavor physics to be around the electro-weak scale.

• Interesting phenomenology: new vector like fermions, flavor gauge bosons, flavons. Possibility of a heavy Higgs. Details model dependent but structure robust.
Conclusions

• Flavor physics might not be as far in energy as previously expected.

• Simplest construction of flavor gauge symmetries in the SM realizes the inverted hierarchical structure. This allows flavor physics to be around the electro-weak scale.

• Interesting phenomenology: new vector like fermions, flavor gauge bosons, flavons. Possibility of a heavy Higgs. Details model dependent but structure robust.

• So far flavor scale is a free parameter. Possible to link it to the TeV scale in a theory that addresses the hierarchy problem?