An Effective Theory of Quintessence Perturbations

Guido D’Amico

SISSA, Trieste

May 22th 2008, Padova
Effective Theory

Outline

- Effective Theory
- The Quintessence Plane

Outline

- Effective Theory
- The Quintessence Plane
- Limits and Observations

Outline

- Effective Theory
- The Quintessence Plane
- Limits and Observations
- Conclusions and Future Work

The general idea

Usual approach to (inflation and) DE models:

1. Take a Lagrangian for a scalar field
2. Solve EOM for scalar + FRW equations, to find an accelerating expansion
3. Study perturbations around this solution
The general idea

Usual approach to (inflation and) DE models:

1. Take a Lagrangian for a scalar field
2. Solve EOM for scalar + FRW equations, to find an accelerating expansion
3. Study perturbations around this solution

We want to focus directly on the theory of perturbations around a generic background evolution
The general idea

Usual approach to (inflation and) DE models:

1. Take a Lagrangian for a scalar field
2. Solve EOM for scalar + FRW equations, to find an accelerating expansion
3. Study perturbations around this solution

We want to focus directly on the theory of perturbations around a generic background evolution

We can construct a stable model violating the NEC \((w < -1)\)

Difference with inflation

- DE is not the only relevant source of gravity
Difference with inflation

- DE is not the only relevant source of gravity
- We are interested in its (gravitational) couplings with matter
Difference with inflation

- DE is not the only relevant source of gravity
- We are interested in its (gravitational) couplings with matter
- We are interested in the sub-horizon dynamics
Constructing the action

Start by choosing gauge comoving with scalar field: $\delta \phi(\vec{x}, t) = 0$. Time diffs are broken: spatial diffs remain. Then the most generic Lagrangian will contain:

- Generic functions of time
- $\partial_\mu t = \delta_\mu^0 \implies$ upper 0 indices are ok: g^{00}, R^{00}
- Geometric objects of the 3d spatial slices: e.g. extrinsic curvature

$$K^\mu_\nu = H \delta^\mu_\nu + \delta K^\mu_\nu$$

$$S = \int d^3x \, d^3t \sqrt{-g} \left[F(R_{\mu\nu\rho\sigma}, g^{00}, K_{\mu\nu}, \nabla_\mu, t) \right]$$
Expanding up to second order:

\[S = \int d^3 x \, dt \sqrt{-g} \left[\frac{M^2_{\text{Pl}}}{2} R + L_m + c(t) g^{00} - \Lambda(t) + \
ight. \\
+ \frac{M^4(t)}{2} (g^{00} + 1)^2 - \frac{\bar{M}^2(t)}{2} \delta K^2 \\
- \frac{\bar{M}^2(t)}{2} \delta K^i \delta K^j - \frac{\hat{M}^3(t)}{2} \delta K (g^{00} + 1) \right] \\

Fixing the tadpoles:

\[\rho_Q = T^{(Q)}_{00} = \Lambda(t) - c(t) \]

\[p_Q = \frac{1}{3} g^{ij} T^{(Q)}_{ij} = -[c(t) + \Lambda(t)] \]
Finally:

\[S = \int d^3 x \, dt \, \sqrt{-g} \left[\frac{M_{\text{Pl}}}{2} R + L_m \right] \]
Finally:

\[S = \int d^3x \, dt \, \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R + L_m + p_Q - \frac{1}{2}(\rho_Q + p_Q)(g^{00} + 1) + \right] \]

- Quintessence
Finally:

\[S = \int d^3x \, dt \, \sqrt{-g} \left[\frac{M_{Pl}}{2} R + L_m + p_Q - \frac{1}{2} (\rho_Q + p_Q)(g^{00} + 1) + \frac{M^4}{2} (g^{00} + 1)^2 \right] \]

- Quintessence
- k-Essence
Finally:

\[S = \int d^3x \, dt \, \sqrt{-g} \left[\frac{M_{Pl}^2}{2} R + L_m + \rho_Q - \frac{1}{2} (\rho_Q + p_Q)(g^{00} + 1) + \frac{M^4}{2} (g^{00} + 1)^2 - \frac{\bar{M}^2}{2} \delta K^2 \right] \]

- Quintessence
- k-Essence
- Ghost Condensate
Fluctuation Lagrangian

We restore full diff invariance by performing a (broken) time diff $t \rightarrow t + \xi^0$, and promoting $\xi^0(x) = -\pi(x)$.

Then we choose synchronous gauge:
Fluctuation Lagrangian

We restore full diff invariance by performing a (broken) time diff
$t \rightarrow t + \xi^0$, and promoting $\xi^0(x) = -\pi(x)$.
Then we choose synchronous gauge:

$$S = \frac{1}{2} \int d^3x dt a^3 \left[4M^4 \dot{\pi}^2 + (\rho_Q + p_Q)\pi^2 - (\rho_Q + p_Q) \frac{(\nabla \pi)^2}{a^2} +
+ 3H(\rho_Q + p_Q)\pi^2 - (\rho_Q + p_Q)\dot{\pi} - \frac{\bar{M}^2}{2} \left(\frac{\dot{h}}{2} - \frac{\nabla^2 \pi}{a^2} \right)^2 \right]$$
We can now study the theoretical constraints on quintessence
\[S \supset \frac{1}{2} \int d^3x \, dt \, a^3 \left[4M^4 \dot{\pi}^2 + (\rho_Q + p_Q) \dot{\pi}^2 - (\rho_Q + p_Q) \frac{(\nabla \pi)^2}{a^2} \right] \]

No ghosts: Classical and quantum stability $\implies 4M^4 > \rho_Q + p_Q$

c_s^2 has the same sign as $w + 1$
\[
S \supset \frac{1}{2} \int d^3x \, dt \, a^3 \left[4M^4 \dot{\pi}^2 + (\rho_Q + p_Q) \dot{\pi}^2 - (\rho_Q + p_Q) \frac{(\nabla \pi)^2}{a^2} \right]
\]

\[c_s^2 > 1 \iff M^4 < 0\] implies a non Lorentz-invariant UV completion

Arkani-Hamed et al., hep-th/0602178
\[
S \gtrsim \frac{1}{2} \int d^3x \, dt \, a^3 \left[- (\rho_Q + p_Q) \frac{(\nabla \pi)^2}{a^2} - \bar{M}^2 \left(\frac{\nabla^2 \pi}{a^2} \right)^2 \right]
\]

Cosmological modes, \(\frac{k}{a} \sim H \), have \(\omega \sim c_s^2 k \) for \(|(1 + w_Q)\Omega_Q| \gg \frac{\bar{M}^2}{M_{Pl}^2} \)
\[S \supset \frac{1}{2} \int d^3x \, dt \, a^3 \left[4M^4 \pi^2 - (\rho_Q + p_Q) \frac{(\nabla \pi)^2}{a^2} - \bar{M}^2 \left(\frac{\nabla^2 \pi}{a^2} \right)^2 \right] \]

Now, \(\omega_{\text{inst}} \simeq (1 + w_Q)\Omega_Q \frac{M_{\text{Pl}}^2 H^2}{M^2 \bar{M}} \); \(\omega_{\text{inst}} \ll H \implies c_s^2 \ll \frac{H \bar{M}}{M^2} \)

\(M > (1\text{mm})^{-1} \) is the cutoff of my theory: \(|c_s^2| < 10^{-30}! \)
\[S = \frac{1}{2} \int d^3x \, dt \, a^3 \left[4M^4 \dot{\pi}^2 + (\rho_Q + p_Q) \dot{\pi}^2 - (\rho_Q + p_Q) \left(\frac{\nabla \pi}{a^2} \right)^2 + 3 \dot{H} (\rho_Q + p_Q) \pi^2 - (\rho_Q + p_Q) \dot{h} \pi - \frac{\bar{M}^2}{2} \left(\frac{\dot{h}}{2} - \frac{\nabla^2 \pi}{a^2} \right)^2 \right] \]

Nothing strange happens when you cross \(w = -1 \)

The phantom divide is really... a phantom!
$\omega < -1$: k-essence limit

Neglect 4-derivative term:

$$|1 + w_Q| \Omega_Q \gg \frac{M^2}{M_{Pl}^2} \implies \omega \simeq c_s k \text{ with } c_s \simeq 0$$
$w < -1$: k-essence limit

Neglect 4-derivative term:

$|1 + w_Q| \Omega_Q \gg \frac{\bar{M}^2}{M^2_{Pl}} \implies \omega \simeq c_s k$ with $c_s \simeq 0$

Quintessence escapes (!) from DM potential wells: $\delta_Q \simeq \frac{1+w}{1-3w} \delta_m$
$w < -1$: k-essence limit

Neglect 4-derivative term:

$$|1 + w_Q| \Omega_Q \gg \frac{\bar{M}^2}{M_{Pl}^2} \implies \omega \simeq c_s k \text{ with } c_s \simeq 0$$

Quintessence escapes (!) from DM potential wells:

$$\delta_Q \simeq \frac{1+w}{1-3w} \delta_m$$

Is it possible to experimentally distinguish $c_s = 0$ from $c_s = 1$?

Until which value of $w + 1$?
ISW-Galaxy correlation

Distinction possible if $|1 + w_Q| > 0.05$?

Corasaniti, Giannantonio, Melchiorri, 2005

Hu, Scranton, 2004
$w \to -1$: Cosmological constant limit

For cosmo scales $|1 + w_Q| \Omega_Q \ll \frac{\bar{M}^2}{M_{Pl}^2}$, $\omega \approx k^2$

Ghost-condensate limit:

$$S = \frac{1}{2} \int d^3 x \int d t a^3 \left[4 M^4 \dot{\pi}^2 - \bar{M}^2 \left(\frac{\dot{h}}{2} - \frac{\nabla^2 \pi}{a^2} \right)^2 \right]$$

Modification of gravity at very small scales, but in a very long time!
The scalar degree of freedom does not disappear even if $w = -1$

$$\ddot{\pi} + 3H \dot{\pi} = -\frac{\bar{M}^2}{12 M^4 M_{Pl}^2} \nabla^2 \delta \rho_m$$

Driving not suppressed by $1 + w_Q$ in this limit
\(w \to -1: \) Cosmological constant limit

For cosmo scales \(|1 + w_Q| \Omega_Q \ll \frac{M^2}{M_{Pl}^2} \implies \omega \approx k^2\)

Ghost-condensate limit:

\[
S = \frac{1}{2} \int d^3x \, dt \, a^3 \left[4M^4 \dot{\pi}^2 - M^2 \left(\frac{\dot{h}}{2} - \frac{\nabla^2 \pi}{a^2} \right)^2 \right]
\]

Modification of gravity at very small scales, but in a very long time!
The scalar degree of freedom does not disappear even if \(w = -1 \)

\[
\ddot{\pi} + 3H \dot{\pi} = -\frac{M^2}{12M^4 M_{Pl}^2} \frac{\nabla^2 \delta \rho_m}{H a^2}
\]

Driving not suppressed by \(1 + w_Q \) in this limit

\[
\delta \rho_Q = 4M^4 \dot{\pi} \sim \frac{M^2}{M_{Pl}^2} \delta \rho_m \ll \delta \rho_m \quad \text{No relevant perturbations!}
\]
The \hat{M} operator

So far, we neglected the term $\sqrt{-g}M^3g^{00}\delta K \to a^3\dot{M}^3 \left[\frac{\dot{h}}{2}\dot{\pi} + \dot{\pi}\frac{\nabla^2\pi}{a^2} \right]

In Minkowski background it is a total derivative
The \hat{M} operator

So far, we neglected the term $\sqrt{-g} \hat{M}^3 g^{00} \delta K \to a^3 \hat{M}^3 \left[\frac{\dot{\pi}}{2} + \pi \frac{\nabla^2 \pi}{a^2} \right]$

In Minkowski background it is a total derivative

In FRW it is a correction to the spatial kinetic term:

$$S \supset \frac{1}{2} \int d^4 x a^3 \left[(\rho_Q + p_Q + 4M^4) \dot{\pi}^2 - \left(\rho_Q + p_Q + H\hat{M}^3 \right) \frac{\nabla \pi^2}{a^2} \right]$$

However, in the GC limit it can be suppressed by shift symmetry
The \hat{M} operator

So far, we neglected the term $\sqrt{-g} \hat{M}^3 g^{00} \delta K \rightarrow a^3 \hat{M}^3 \left[\frac{\dot{h}}{2} \dot{\pi} + \dot{\pi} \frac{\nabla^2 \pi}{a^2} \right]$

In Minkowski background it is a total derivative

In FRW it is a correction to the spatial kinetic term:

$S \supset \frac{1}{2} \int d^4 x a^3 \left[(\rho_Q + p_Q + 4M^4) \dot{\pi}^2 - \left(\rho_Q + p_Q + H\hat{M}^3 \right) \frac{\nabla \pi^2}{a^2} \right]$

However, in the GC limit it can be suppressed by shift symmetry

Main effect: if $H\hat{M}^3 > \rho_Q + p_Q$, no gradient instability at all!

However, still have $c_s^2 = \frac{\rho_Q + p_Q + H\hat{M}^3}{\rho_Q + p_Q + 4M^4} \sim \frac{H}{\hat{M}} \sim 0$
Conclusions and future work

- Systematic parametrization of high energy effects
Conclusions and future work

- Systematic parametrization of high energy effects
- What is forced by symmetries is made explicit
Conclusions and future work

- Systematic parametrization of high energy effects
- What is forced by symmetries is made explicit
- Using ϕ, one can always perform field redefinitions, while π gives a standard non-linear representation of time diffs
Conclusions and future work

- Systematic parametrization of high energy effects
- What is forced by symmetries is made explicit
- Using ϕ, one can always perform field redefinitions, while π gives a standard non-linear representation of time diffs
- All single field DE models with no direct matter coupling are unified
Conclusions and future work

- Systematic parametrization of high energy effects
- What is forced by symmetries is made explicit
- Using ϕ, one can always perform field redefinitions, while π gives a standard non-linear representation of time diffs
- All single field DE models with no direct matter coupling are unified
- Simple to get theoretical constraints: $w_Q < -1 \implies c_s^2 \simeq 0$
Conclusions and future work

- Systematic parametrization of high energy effects
- What is forced by symmetries is made explicit
- Using ϕ, one can always perform field redefinitions, while π gives a standard non-linear representation of time diffs
- All single field DE models with no direct matter coupling are unified
- Simple to get theoretical constraints: $w_Q < -1 \implies c_s^2 \simeq 0$
- Fluid description (as in Hu, 1998) not the more general language: important to understand if can use codes with $w < -1, c_s^2 = 0$
Conclusions and future work

- Systematic parametrization of high energy effects
- What is forced by symmetries is made explicit
- Using ϕ, one can always perform field redefinitions, while π gives a standard non-linear representation of time diffs
- All single field DE models with no direct matter coupling are unified
- Simple to get theoretical constraints: $w_Q < -1 \implies c_s^2 \simeq 0$
- Fluid description (as in Hu, 1998) not the more general language: important to understand if can use codes with $w < -1, c_s^2 = 0$
- Understand the possible observational consequences
Thanks!